If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.9x^2+4x-40=0
a = 0.9; b = 4; c = -40;
Δ = b2-4ac
Δ = 42-4·0.9·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*0.9}=\frac{-4-4\sqrt{10}}{1.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*0.9}=\frac{-4+4\sqrt{10}}{1.8} $
| x+5x2-6/2=8 | | n²-3n+8n=4 | | 14+1=-3(7x-5) | | 4(x+4)/3=(3x−13) | | 0.5=2/x | | 4y+10=36 | | 0.9x^2+4x-80=0 | | (2x-8)/5=20 | | 5x-25=3x+6 | | 0.75x+0.2(80-x)=20 | | 3(7+5x=-9 | | 8.1x^2-2x+40=0 | | -4•(2z+6)-12=4 | | 5x+4x+x=34 | | 3q=-10 | | -(x-+2)=3x-5–x+1 | | 6^2x=11^x+3 | | 6^2x=11^11+3 | | 254+x/2=454 | | 2.5x4.7=11.75 | | 18=6-5x | | 5x+43=4x-80 | | 6x-42+42=42 | | 3m+4/2=11 | | 6x-42+0=0 | | 7x-11=3x+33 | | h=2(20)+2 | | -4(p-(3-p)=3(6p-2) | | 20=2c+2 | | H=4c+0 | | H=2c+4 | | 20=2c+4 |